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We study the influence of the driving rate in the two-dimensional Oslo rice pile model. We find that the usual
power-law behavior of the avalanche size distribution still holds for small avalanches, independent of the
driving rate. The signature of fast driving is, however, the increase of the incidence rate of large avalanches.
For larger driving rates, this increase is more prominent and spreads to smaller avalanche sizes. As a result, the
mass flow due to large avalanches is increased much more than would be expected from an increase in driving
rate alone. Fast driving leads to a dramatic increase in devastating avalanches, just before the continuous flow
regime is reached.
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I. INTRODUCTION

Self-organized criticality �SOC� �1� was introduced as a
unifying theory for many systems in nature and society:
snow avalanches �2�, earthquakes �3�, stock markets �4�, for-
est fires �5�, and biological evolution �6�. One of the com-
mon features of these systems is a power-law distribution of
the event sizes. However, these systems are difficult to study
experimentally, so numerical models were developed that ex-
hibit the same statistical behavior. A couple of the models
that are thought to exhibit SOC behavior are the Bak-Tang-
Wiesenfeld �BTW� sandpile model �1,7�, the rice pile models
�the Oslo model �8� and the Amaral-Lauritsen �9� model�,
and the forest fire models �the Drossel-Schwabl �10� and the
Bak-Chen-Tang �11� models; see, however, also �12��.

An important prerequisite to obtain SOC is slow driving,
i.e., the time scale of the driving should be much larger than
the lifetime of an event. However, in most experimental sys-
tems it is difficult to estimate what slow driving means quan-
titatively. Therefore a good understanding of the response of
the system to different driving rates is needed. Tang et al.
�13� studied how the average height of the pile changes with
different driving rates in the BTW sand pile model. Corral et
al. �14� studied the transition from the avalanche phase to the
continuous flow regime in the one-dimensional Oslo rice pile
model �8�. They found that the roughness exponent of the
pile does not change as the driving rate of the system is
increased, provided that the pile is in the avalanche regime.
If the driving rate is further increased, such that the continu-
ous flow phase is reached, the root mean square of height
fluctuations becomes smaller and is independent of the sys-
tem size. In addition, the transit time and the average slope
of the pile as a function of driving rate are power laws, with
exponents dependent on the phase the pile is in. Interestingly,
the exponents that characterize the continuous flow regime
are connected to the critical exponents that describe the ava-
lanches in the SOC limit. However, the effect of the driving
rate on the distribution of avalanche sizes was not studied.
Malamud et al. �5� studied the distribution of forest fires and
showed that the forest fire model displays the same SOC
behavior as real wild fires. They have performed simulations
with three different sparking rates and found a power-law
distribution of the burned areas with exponents dependent on
the sparking rates.

In this paper we study the influence of the driving rate on
the distribution of avalanche sizes for the Oslo rice pile
model generalized to two dimensions. We chose this particu-
lar system because its dynamics is closest to a three-
dimensional experimental rice pile �15�. We find that the dis-
tribution of avalanche sizes is a power law for all driving
rates in the small avalanche regime. However, due to the
merging of avalanches at higher driving rates, a hump ap-
pears in the large avalanche regime. This hump influences
also the apparent exponent of the distribution of avalanche
sizes.

A detailed description of the model with the parameters
used can be found in Sec. II. In Sec. III we present our
results, and in Sec. IV we draw our conclusions.

II. NUMERICAL SIMULATIONS

For our simulations we use the Oslo �8� rice pile model
generalized to two dimensions �16� in a similar manner as
the two-dimensional BTW sand pile model �1,7�.

The system consists of an L�L square lattice. The value
at each site �i , j� of the lattice represents the slope z�i , j� of
the pile in that point. The “particles” in this model are the
slope units. Particles are always deposited along the row
y=1 at the closed boundary. If locally the slope of the pile
exceeds the critical slope zc�i , j� an avalanche is started and
the following relaxation rules are applied:

z�i, j� � z�i, j� − 4,

z�i � 1, j� � z�i � 1, j� + 1,

z�i, j � 1� � z�i, j � 1� + 1. �1�

This event is called a toppling �note: for a two-dimensional
lattice, the heights cannot be derived from the slopes�. All
the sites that are selected for toppling are identified and up-
dated simultaneously �matrix update step�. The system has
closed boundaries at x=1, x=L, and y=1 and an open bound-
ary at y=L. If the critical slope is exceeded at a site at a
closed boundary, the slope is decreased by three units �in the
corner between two closed boundaries, by two units�, which
are evenly distributed between the three �or two� neighbors
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in the pile. If the critical slope is exceeded at an open bound-
ary, the rules �1� are applied; however, the slope unit that
falls off the pile is lost. Particles are always deposited along
the row y=1 at the closed boundary. The value of the critical
slope is chosen randomly to be zc�i , j�=3 or zc�i , j�=4. This
randomness of the critical slope reflects the different ways an
anisotropic rice grain can fall. After a toppling event the
critical slope of the site �i , j� that was relaxed is updated,
zc�i , j�� �3,4�. The avalanche propagates until all the sites in
the system are stable, z�i , j��zc�i , j� for i , j� �1,L�. Note
that thus all avalanches that occur on the pile are included in
the analysis.

The feeding of the pile is continuous; particles are added
also during the evolution of the avalanches. The driving rate
is defined as r=1 /�t �14�, where �t is the number of matrix
updates between depositions, so at every �t step one particle
is deposited at a random site of the row y=1. r→0 is the
SOC limit, when one particle is added only between the ava-
lanches. This is henceforth denoted by r=0.

The response of the system to the newly deposited par-
ticles is avalanches of all sizes. Figure 1 shows an image of
an avalanche on a 200�200 lattice, obtained with a driving
rate of r=0. The avalanche propagates from the top to the
bottom, from the closed to the open boundary. After each site
is stable we identify the individual avalanche clusters. The
size of the avalanche clusters, s, is defined as the number of
topplings in each cluster.

III. INFLUENCE OF THE DRIVING RATE ON THE
DISTRIBUTION OF AVALANCHE SIZES

In this section we present the results of the numerical
simulations. The simulations consist of at least 105 ava-
lanches �unless stated otherwise�. The larger the system, the
larger the maximum avalanche size observed in the simula-
tion is. However, large avalanches are less frequent than

small ones, so more time steps are needed to obtain reliable
statistics in the large avalanche regime. Hence, larger sys-
tems require the collection of more avalanches.

We have performed simulations with different driving
rates r� �0, 0.1, 0.2, 0.25, 0.33, 0.5, 1, 1.5, 2�. Even with the
highest driving rate used, the system displayed intermittent
avalanches, i.e., the continuous flow regime �14� was not yet
reached. For r=4, which means that four particles are ran-
domly added along the first row of the system at each matrix
update step, the continuous flow regime is reached in the
system with linear size L=50. We say that the system is in
the continuous flow if the first avalanche does not stop in 107

matrix update steps. Although we still observe individual
avalanches for the driving rate r=3, the lifetime of the ava-
lanches is greatly increased, so it is difficult to obtain reliable
statistics in this case.

In Fig. 2�a� we present the distribution of avalanche sizes
in the slow driving regime �r=0�, for systems with linear
sizes: L=50, 100, 200, and 500. The distributions are power
laws for up to five orders of magnitude: P�s��s−�, with an
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FIG. 1. Image of an avalanche obtained using the Oslo rice pile
model on a 200�200 lattice, with a driving rate of r=0. The ava-
lanche propagates from the top to the bottom, from the closed
boundary to the open one, along the direction indicated by the ar-
row. The color coding �see the right-hand side scale bar� indicates
the number of topplings that occurred at each site.

FIG. 2. �a� Distribution of avalanche sizes in the slow driving
regime �r=0� for systems with linear sizes L=50, 100, 200, and
500. The distributions are power laws over up to five orders of
magnitude with an exponent �=1.63. The straight line is a fit to the
data for L=500 and shifted for clarity. �b� The same data scaled
to obtain a data collapse. The values used for the scaling are
D=2.55 and �=1.63.
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FIG. 3. Finite size scaling of the avalanche sizes for driving rates r as indicated. The parameters used for the data collapse are: �a� D
=2.65 and �=1.64, �b� D=2.59 and �=1.63, �c� D=2.55 and �=1.62, �d� D=2.55 and �=1.60, �e� D=2.53 and �=1.59, �f� D=2.55 and
�=1.53, �g� D=2.40 and �=1.55, and �h� D=2.45 and �=1.63.
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exponent �=1.63. The deviation from the power law in the
large avalanche regime is a finite size effect. However, a
more reliable way to determine the exponent � of the distri-
bution is by means of finite size scaling. For r=0, the best
data collapse is obtained using the parameters �=1.63 and
D=2.55 �see Fig. 2�b��. Here D is the fractal dimension of
the avalanches; however, D was determined from optimizing
the data collapse in Fig. 2�b�.

For higher driving rates, we have performed simulations
on systems with linear sizes: L=50, 100, and 200. The dis-
tribution of avalanche sizes is a power law for all driving
rates in the small avalanche regime. For each value of r we
can obtain the exponent of the distribution by collapsing the
data for the different system sizes L �see Fig. 3�. In the in-
terval r� �0.2,1� we observe an apparent decrease of the
exponent �, from 1.63 to 1.53, with increasing driving rates
�see Fig. 4�, while a hump starts to appear in the large ava-
lanche regime. This is due to the fact that adding particles to
the already unstable pile initiates several simultaneous ava-
lanches which can merge. This means that the probability to
have large avalanches increases, thereby creating a hump in

the large avalanche regime. If the driving rate is increased
even further, r�1, meaning that we add more than one par-
ticle at each matrix update step, the hump becomes the domi-
nant feature of the distribution. However, the small ava-
lanches are still power-law distributed. The seemingly
continuously changing � with increasing driving rate is a
behavior unexpected for a critical exponent. However, the
apparent fluctuation of the exponent is probably caused by
the presence of the hump in the large avalanche regime and
therefore is not significant.

The volume fractal dimension D of the avalanches seems
to decrease and the avalanches become less compact if the
driving rate is increased �r�1�. However, the hump in this
case does not collapse nicely for the different system sizes
�Figs. 3�f�–3�h��, so it is difficult to estimate the value of D
precisely from the finite size scaling procedure.

IV. CONCLUSIONS

We have studied the influence of the driving rate on the
distribution of avalanche sizes. We find that the signature of
fast driving is the appearance of a hump in the large ava-
lanche regime. This hump is more and more pronounced as
the feeding rate increases. However, the distribution of small
avalanche sizes remains a power law independent of driving
rate. The apparent value of the exponent of this distribution
is influenced by the presence of the hump. The apparent
change of the power-law exponents in our system as a func-
tion of the driving rate could explain the different exponents
found for real forest fires in different regions �5�, but also the
slight variations in the exponents for the snow avalanches in
different areas �2�. In many natural systems it is impossible
to change the driving rate, but in the laboratory experiments
�e.g., a one-dimensional rice pile �17� and a three-
dimensional rice pile �15� �both using long grain rice�, a
one-dimensional pile of steel balls �18�� it is worthwhile to
experiment with different feeding rates, to verify whether the
system is driven in the SOC limit or not.
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FIG. 4. Dependence of the exponent �, as obtained from finite
size scaling, on the driving rate r. The error bars indicate the range
of values obtained from a power-law fit of the avalanche size dis-
tribution for different system sizes.
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